
WikiBench: A distributed, Wikipedia
based web application benchmark

Master thesis by Erik-Jan van Baaren
Student number 1278967

erikjan@gmail.com

Under the supervision of:
Guillaume Pierre
Guido Urdaneta

Vrije Univesiteit Amsterdam
Department of Computer Science

May 13, 2009

Abstract

Many different, novel approaches have been taken to improve throughput
and scalability of distributed web application hosting systems and relational
databases. Yet there are only a limited number of web application bench-
marks available. We present the design and implementation of WikiBench,
a distributed web application benchmarking tool based on Wikipedia. Wik-
iBench is a trace based benchmark, able to create realistic workloads with
thousands of requests per second to any system hosting the freely available
Wikipedia data and software. We obtained completely anonymized, sam-
pled access traces from the Wikimedia Foundation, and we created software
to process these traces in order to reduce the intensity of its traffic while
still maintaining the most important properties such as inter-arrival times
and distribution of page popularity. This makes WikiBench usable for both
small and large scale benchmarks. Initial benchmarks show a regular day of
traffic with its ups and downs. By using median response times, we are able
to show the effects of increasing traffic intensities on our system under test.

Contents

1 Introduction 2

2 Related Work 4
2.1 TPC-W . 4
2.2 Web Polygraph . 6

3 System Model 8
3.1 Requirements . 9
3.2 WikiBench design . 11
3.3 TraceBench Design . 15
3.4 WikiBench Workflow . 16

4 Workload Creation 19
4.1 Changing the Request Rate 19
4.2 A Hybrid Approach . 21

5 Benchmark Results 23

6 Future Work 27
6.1 Scaling up traffic and Flash Crowds 27
6.2 Adjust read/write ratio . 27
6.3 Adjust the distribution of page popularity 27
6.4 Indication of realism . 28
6.5 More advanced edits . 28

7 Conclusion 29

1

1 Introduction

Although originally a place designed for researchers to easily exchange in-
formation, the world wide web has become one of the most important infor-
mation infrastructures of modern society. We have seen a rapid transition
from static HTML documents to advanced web applications like online email,
social networks and online office tools such as word processing and spread-
sheets. While such web applications became more and more common over
the past years, only a limited number of web application benchmarking tools
emerged. Hosting advanced web applications can require lots of resources. It
is therefore important to perform research on how to improve various aspects
([11], [12], [8], [16]) of such hosting systems. Web application benchmarks
are especially important when doing such research, since they provide a con-
figurable, reproducible and often realistic simulation of real web application
usage. Benchmark tools aid the systematic research into the performance of
web hosting systems and make it possible to compare different systems and
different system setups.

There are a number of benchmark applications that are used today, like
TPC-W, RUBBoS and RUBiS. These benchmarks have similar character-
istics. TPC-W simulates a web store, while RUBBoS is a simple bulletin
board system and RUBBiS mimics an online auction site. Although these
tools have proven to be useful to many researchers, they have limits in terms
of data set size, scalability and functionality. For example, all three tools
run on a single system. There is no built-in way to scale up to multiple sys-
tems. Although it can be subject to heated debate, we feel that the synthetic
workloads these benchmarks create are unrealistic and lack configurability.
Another important downside of these benchmarks is that they generate a
constant load through a fixed number of emulated browsers. These emulated
browser all wait indefinitely for a server to answer a request, while in reality
a visitor is only prepared to wait for a limited amount of time, like 4 to 8
seconds [7]. In addition, the number of visitors typically varies greatly de-
pending on the time of day, while most benchmark tools show a constant
load over the entire time period. So these tools lack realism, flexibility and
configurability: qualities that we think are very important when it comes to
the development and testing of advanced web hosting setups.

To address some of the shortcomings of the currently available bench-
mark tools, we created WikiBench. WikiBench has a number of advantages
compared to the previously discussed tools. First of all, Wikibench offers a
high degree of realism, since it is entirely based on the Wikipedia software
and data. we have obtained access traces from the WikiMedia Foundation.
These traces contain detailed traffic logs of requests made to Wikipedia by its

2

users. We are able to convert these access traces to benchmark workloads by
using our specialized TraceBench tool. TraceBench can reduce the intensity
of this traffic while maintaining important traffic properties, allowing us to
create very realistic benchmark workloads with intensities ranging from very
low up to the original traffic intensity of the trace file.

To match the server side software with the workload files, we use the open
source MediaWiki application [1], the software used to run Wikipedia. This
application is quite advanced and has been tested extensively. In addition
we have used publicly available snapshots from the WikiMedia foundation to
build a mirror of the English Wikipedia site. So we now have a real world
web application with a large amount of data to serve.

Since Wikipedia has a large and constantly increasing amount of data
and visitors, basing a benchmark tool on this data is not an easy task. We
have designed WikiBench, from the ground up to be an inherently distributed
application. It can scale up from one machine for small benchmarks to many
machines working together in a coordinated fashion. All put together, we
believe we have created a benchmarking tool that is able to create a workload
which matches reality closely. By using real world server side software and
data, we think the WikiBench benchmarking suite is a very realistic and
flexible research tool.

Initial benchmark results show a typical day of Wikipedia traffic and
the relation between the request rate and the server response times. The
intensity of this traffic is reduced with our TraceBench tool to fit our system
under test.

The rest of this thesis is organized as follows. In Section 2 we discuss a
number of existing web application benchmarks, in Section 3 we describe the
WikiBench design in detail. In Section 4 we focus on how we create realistic
workloads of arbitrary size from the trace files. Section 5 discusses our initial
results and section 6 concludes.

3

2 Related Work

One of the more well known and intensively used tools to benchmark applica-
tion hosting systems is TPC Benchmark WTM[13]. Another tool we will dis-
cuss, intended for benchmarking caching servers, is called Web Polygraph[10].
Although not aimed at application benchmarking, it does have a number of
interesting features.

2.1 TPC-W

TPC Benchmark WTM (TPC-W) is a transactional web benchmark[13]. The
workload is performed in a controlled internet commerce environment that
simulates the activities of a business oriented transactional web server. This
is done by implementing a web store and a testing tool that browses through
this store. TPC-W uses the concept of Emulated Browsers (EBs). Each
EB runs in a separate thread and emulates a user’s browser and the user
actions. The EB uses Markov chains to find random paths in the TPC-W
store. An EB has a random think time that emulates the time a user takes
before clicking on the next link. This think time is distributed in such a
way that the average think time is 7 seconds. Load generation in TPC-
W happens in a best-effort fashion. This means that the EBs wait for each
request to be processed, no matter how long this takes. The result being that
this benchmark tool can only vary load by changing the degree of concurrent
emulated browsers. instead of changing the request rate, which would match
reality much closer.

TPC-W offers three different modes. These modes have different ratios
between the amount of information requests (page reads) and the number of
orders places by customers. In the default mode, the ratio of read and order
pages is 95%/5%. In browse mode, users mostly browse around with 98%
browsing and 2% ordering. In order mode, users mostly buy stuff and order
pages are visited 50% of the time. Order mode puts much more pressure on
the database system of a TPC-W site, since the actions associated with the
ordering of products are not cacheable. So the latter mode can be used to
put more pressure on the database without having to increase the web server
capacity. TPC-W Benchmark has been discontinued since 2005, but is still
used for testing distributed hosting systems.

Two other commonly used benchmark tools are called RUBBoS [2] and
RUBiS [3]. Both have similar characteristics to TPC-W. RUBBoS is a bul-
letin board benchmark modeled after an online news forum like Slashdot.
RUBiS is a benchmarking tool based on an online auction site like eBay.
Both RUBBoS and RUBiS make use of emulated user sessions, transition

4

tables with probabilities and wait times.
Although web site traffic does often have returning and predictable pat-

terns, we feel that the workloads of these tools are too limited. A larger
problem we see is that the emulated browsers create a very stable and pre-
dictable workload on a system. These tools, for example, do not create spikes
of traffic at the page level, while in reality pages get linked on large news
forums like Digg or Slashdot. We call these traffic spikes flash crowds. A
single page may, for short periods of time, easily receive many times more
traffic than it gets on average. For a distributed hosting system it is easy
to anticipate the stable traffic pattern and page popularity distribution that
Markov chains create. But in reality a distributed hosting system will have
to deal with more difficult traffic patterns like the page level flash crowds
described above. Such flash crowds, even small ones, change the spatial and
temporal locality of the requests, possibly overloading parts of the system if
no timely measures are taken.

Another problem we see with the emulated browsers in the described
benchmarking tools is that they use a fixed amount of concurrent emulated
browsers to put load on the system under test. So the load put on a host-
ing system is defined by the amount of emulated browsers instead of by
the request rate. If the server is overloaded, the emulated browsers will all
wait longer, decreasing the load put on the server at some point. Workload
and response time are therefore directly related to each other. This is how-
ever not representative of real world traffic, where new and current visitors
will keep hammering a hosting system with new requests. In other words,
these benchmarks define server load by the number of concurrent emulated
browsers, instead of by the number of requests per time unit a server actually
can handle before it starts to react unacceptably slow.

All three synthetic traffic generators also lack the traffic that is generated
by web crawlers, malicious users and page scrapers. Such users can for ex-
ample have a very constant think time and different page preferences than a
regular visitor. A crawler will generally visit all pages in a site, while most
regular users will only visit a small subset. A malicious user might submit
loads of difficult search queries or extraordinary amounts of page edits to
vandalize the content. Page scrapers might only download the page and not
the related items, like images and style sheets. These users exist in the real
world, so a system should be able to deal with them. On a large scale host-
ing system like that of Wikipedia, all this contributes only slightly to the
traffic so it is not unreasonable to not take this into account in a synthetic
workload.

Finally, all three benchmarks are not designed to scale. One needs to
start multiple machines by hand and create tools to synchronize the start of

5

these individual machines. These individual benchmark processes will not
coordinate with each other, making it more difficult to detect errors. E.g.
if one fails, other machines will keep generating load without noticing this
failure.

2.2 Web Polygraph

Web Polygraph [10] is a tool for benchmarking HTTP intermediaries like
proxy servers and other web caching products. Even though this benchmark
tests HTTP intermediaries instead of HTTP servers, Web Polygraph is still
interesting enough to mention since the authors have taken so much care to
create realistic workloads. The Web Polygraph benchmark is based entirely
on synthetic traffic workloads, which are created in conjunction with industry
and various research groups. The creators of Web Polygraph have tried to
create realistic workloads by analyzing and using many characteristics of real
web traffic, like file type and size distribution and request inter arrival times.
From their research, it becomes clear that creation of synthetic, realistic
workload is a research field in itself.

The Web Polygraph global architecture consists of virtual clients and
servers. Clients request simulated objects from these servers. The HTTP
intermediaries are placed in between. Servers and clients are glued together
by using configuration files that are shared between the two.

The choice for synthetic workloads is made because for this tool’s pur-
pose, real access traces would need to be modified heavily. For example, the
benchmark allows changes to parameters such as the request rate, cache hit
ratios and file size and popularity distribution. The creators argue that using
different (real world) traces to get different types of workloads will change
many parameters at once instead of just one of the parameters. This makes
analyzing performance comparisons more difficult, since different workloads
are not as closely related to each other as is possible with synthetically cre-
ated workloads. It is also argued that many tests do not correspond to any
real trace, so using real traces would make no sense. Furthermore, using real
traces for this benchmark would mean that the benchmark needs to have
detailed knowledge of millions of objects. Instead, the authors have chosen
to embed information about the objects requested from the server in the
URLs of those objects. For example, an object type id embedded in the url
identifies the properties like file size and file type of the requested object.

To vary the workload, the authors created a model that specifies a mean
inter-arrival time for a Poisson stream of requests. The robots, which are
similar to the previously mentioned emulated browsers, multiply this mean
by the current load factor to get the correct inter-arrival time at any moment.

6

Unfortunately, this benchmark tool is of little use when it comes to test-
ing systems that host web applications. Because it is aimed at benchmarking
caching servers, the server side needs to host a very specific web application
and web server that generates data files of different size and type based on
the file name. These data files contain random data. The benchmarking ap-
plication requests files of certain sizes in a certain distribution by adjusting
the requested file names. Unfortunately, the web application is not represen-
tative of a typical web application. E.g. it does not serve web pages that link
to each other. In addition, it does not depend on a database, making it even
less realistic since most advanced web applications are very data intensive.

7

3 System Model

WikiBench consists of a collection of tools. The main tools are:

• TraceBench: A tool to process trace files for use with WikiBench

• WikiBench: the benchmark application itself, which can be divided
into a controller and worker nodes

• Post-processing tools: A set of scripts to process log files produced
by WikiBench and create graphics from the results

WikiBench is in the first place created as a research tool. Our goal is to
create a realistic benchmark with adaptable traffic properties. We therefore
benchmark a real world software application that is used extensively. This
software application is MediaWiki, the software that is used by Wikipedia.
Wikipedia is a collaborative, multi-language online encyclopedia. Wikipedia
is based on wiki technology for storing and giving structure to information.
The MediaWiki application represents the realities we are faced with today
when designing software for a large scale web site with many users. This in
turn means it will put realistic, high demands on a hosting system that is used
to host this web application. An added advantage to using Wikipedia is that
the millions of Wikipedia pages are freely available in the form of snapshots
[4]. So using MediaWiki in conjunction with Wikipedia snapshots allows us
to create a real world application with real world data to be benchmarked.

As was noted by other authors, like those of Web Polygraph [10], creating
useful workloads with a benchmarking tool is a research field in itself. We
are very grateful to have real access traces from Wikipedia. These traces, ob-
tained directly from the WikiMedia foundation, are completely anonymized.
For each request, we only have a unix timestamp, the complete url that was
accessed and a ’save’ flag that is set to true only if the request resulted in
a page change or page creation. No more personal information than avail-
able on the publicly accessible Wikipedia website can be deducted from these
traces. E.g. we do not have access to IP addresses, cookies, user account
information or the contents of a POST request. On top of that, each request
only has a 10% chance of being included in the traces we get. Previous re-
search [15] has shown that these traces contain a representative sample of
the workload Wikipedia gets. We therefore used these traces to create work-
loads for WikiBench instead of creating purely synthetic workloads like other
benchmarking tools have done. This adds realism to the benchmark, since
the traces we use contain all the characteristics that the real Wikipedia site
has to deal with.

8

In this thesis we define the system under test (SUT) as the hosting system
that hosts the Wikipedia data. We approach this SUT as a black box, with
a URL that serves as our entry point. It is out of the scope of this thesis to
define detailed requirements on a hosting system. In principle, the hosting
system can apply any technique that one can think of to improve overall
system performance. The only “common-sense” requirements we put on the
system is that is is accessible through HTTP, exactly like the MediaWiki
software, and that it gives the same responses in identical situations. If the
SUT would be run side by side with a vanilla MediaWiki installation, we
expect the exact same replies when doing identical GET and POST requests
on both servers. There is one exception to this rule: we removed a check
for duplicate edits and CSRF attacks ([5], [17]) from MediaWiki. We worked
around this check by commenting out a single line of MediaWiki code. With-
out this check, we can post anything we want to a wiki page with a single http
POST request. If we would leave this security check in the code, we would
need to first request the edit page, parse that page to obtain a number of
hidden form elements and then perform the POST request. The hidden field,
a secret token that is user specific, is used to prevent CSRF attacks in which
a logged on user might POST data to Wikipedia without knowing it while
he is visiting a malicious web site. Because a malicious site can not guess
or calculate this secret token, it can never perform a valid POST request
without the user noticing it. Leaving the check in place would also increase
the chance of an edit conflict. While requesting and parsing the edit page, a
time window is introduced in which another thread might request that same
page. Because MediaWiki uses timestamps to check for edit conflicts, we
will now have to solve an edit conflict between two threads, introducing even
more complexity.

3.1 Requirements

Wikipedia has a number of characteristics that make it ideal to be used
in a distributed web application benchmark. First of all, there is lots of
data. Just the English wiki, without user and talk pages, contains more
than 7 million articles in the snapshot taken on October 7, 2008. This can
be hosted on one single server, but that server will only be able to sustain
fractions of Wikipedia’s actual traffic. Wikipedia receives high numbers of
requests per second. As of this writing, peaks of 50,000 to 60,000 requests per
second are no exception. So, even with our 10% sample of the access traces,
we can generate high loads up to about 5000 requests per seconds. The
requirements we put on WikiBench obviously need to match these numbers.
This subsection describes the main goals and requirements we have put on

9

WikiBench.

3.1.1 Representative of real world traffic

What constitutes traffic realism? A good synthetic traffic generator can
provide very realistic traffic. We certainly recognize and applaud the efforts
that the writers of Web Polygraph have put into creating realistic traffic
generators for their benchmarking tool, for example. WikiBench is meant
to provide a means of testing hosting systems that host a large scale wiki
site like Wikipedia. For this reason, we define realistic traffic to be traffic
that matches, as closely as possible, the traffic that a large scale wiki engine
receives. Some important aspects of such traffic can be found in [15], in
which Wikipedia traces are statistically analyzed. We identify the following
traffic properties that we consider important and which we want to retain:

• The interarrival times between requests: Wikipedia traces show visitors
as possion arrivals, e.g. arriving randomly spaced in time

• The read/write ratio of wiki pages: this ratio tends to be high, e.g.
there are many reads and not that many writes. This differs greatly
between countries though as can be seen in [15]

• The ratio of static/non-static file requests: it is shown in [15] that only
a small percentage of requests is for pages, most requests are for images,
binaries and other static files

• The distribution of page popularity: There are four very popular pages,
like the Main Page and style sheet page, then a large part of the pages
roughly follows a Zipf distribution and finally a large part is accessed
very infrequently

• The distribution of page save and update operations, which follows a
Zipf distribution. We can also see that more popular pages tend to be
updated more frequently

• Strong load variations on the page level, initiated by events taking place
in the world. These load variation are very typical for Wikipedia and
are a challenge to decentralized hosting systems

• A considerable amount of requests for non-existing pages and files,
which obviously add realism to the traffic.

10

3.1.2 Usable for both large and small scale benchmarks

WikiBench needs to be useable for both small and large scale benchmarks
and anything in between. This requirement has direct consequences for the
workloads that are used by WikiBench. The large amounts of traffic we see
on Wikipedia somehow need to be scaled down while maintaining important
traffic properties as stated above.

3.1.3 Reproducible results

We want results to be reproducible. When we process trace files to reduce
traffic intensity, we want to consistently drop the same pages when running
the processing tools multiple times. This means that when we create a work-
load file twice with the same settings, it should have the same contents.

3.1.4 Highly scalable

WikiBench should be able to generate traffic intensities matching those of
Wikipedia, so it needs to be scaleable.

3.1.5 Adaptable traffic characteristics

Besides offering a realistic workload, we also want to be able to change traffic
characteristics, e.g. we want to be able to create global flash crowds, change
the read/write ratio of wiki pages or adapt other traffic properties by altering
the workload file. Although such changes will lower the realism of the traffic,
they can be very useful when testing hosting systems.

3.1.6 Portability

We want WikiBench to be portable, e.g. it should not be tied to one operating
system. We also want WikiBench to literally be portable — one should be
able to download WikiBench and associated files and run it. WikiBench
therefore includes workload files and a database snapshot, since we can not
be sure about the lifetime of snapshots hosted by WikiMedia. By including
this data WikiBench will be usable “out of the box”.

3.2 WikiBench design

Most of the WikiBench code is written in Java. This choice is made because
of portability and ease of development. The use of Java for high performance
computing requires conservative use of certain libraries. We refrained from

11

Controller

Worker

Worker

System Under Test

HTTP
traffic

raw
trace
lines

Trace file
preprocessed by TraceBench

Connection
Thread

Connection
Thread

Log file with
results

Log file with
resultsControl messages

Controller Worker(s) The SUT as a
black box

Figure 1: WikiBench design and data flow

using Java’s built-in URL and HTTP libraries. Instead, we use HttpCore
4.0 [9] from Apache’s HttpComponents project. HttpCore is the most low
level library from this project. It is lightweight and it allows us to customize
requests to a level that is not available in Java’s standard http libraries.
HttpCore is in beta as of this writing, but the library calls have been frozen
and the library turned out to be very stable during our experiments — its
small memory footprint combined with a very moderate system load work
out very well for WikiBench. We also refrained from using Java RMI for con-
nectivity between multiple WikiBench machines. Java’s object serialization
is an important factor in the speed of RMI. For small or sporadic commu-
nications this serialization is not a problem. For sending many gigabytes of
trace lines however, it is. Since we only have to send over strings of text, we
use TCP sockets instead.

As shown in Figure 1, WikiBench consists of one controller and one or
more worker nodes. The WikiBench core can be started either in controller
mode or in worker mode. The tasks of the controller are to distribute trace
lines to the workers and coordinate work. By using simple plain text con-
trol messages the controller communicates with all connected workers. The

12

worker nodes iteratively get a trace line from the controller, parse the URL
and timestamp from that line, and perform a GET or POST request to the
system under test.

At the controller, there is an object called the TraceReader which has
exclusive access to the trace file on hard disk. Inside the controller, one
thread called a WorkerConnection is created for each worker that connects.
The WorkerConnection thread constantly requests trace lines from the Trac-
eReader object and blindly writes these trace lines into the socket at its
maximum speed. Once a socket blocks because buffers are filled, the thread
blocks until the worker at the other side of the socket has read enough lines.
With this setup, each worker runs at the maximum speed it can sustain.
After writing a line to the worker, the WorkerConnection checks if a message
from the worker is available for reading. This way a worker can notify the
controller of important events. The only event currently implemented is the
situation in which a worker has failed to meet its deadlines. More on this
follows shortly hereafter.

Before the benchmark starts, the controller sends out a start time to the
workers. This start time is based on the real time clock, so it is important that
all participating nodes have their time synchronized. This can be done with
high accuracy by using the Network Time Protocol, available on practically
all operating systems. This is important, since all the workers need to start
at the same time. The timing of a HTTP request is calculated based on
this start time and the first request time that is found in the trace file as
follows. Each worker receives the time of the first request in the trace file. It
subtracts this time from all the timestamps it receives, so all timestamps are
made relative to this initial timestamp. The result is added to the starting
time. In a formula:

AbsoluteRequestT ime = AbsoluteStartT ime + (timestampc − timestampi)

In this formula, AbsoluteRequestT ime is the absolute time at which the
request has to be performed. AbsoluteStartT ime is the time at which the
benchmark was started, this is the time the controller send to all the workers.
timestampc is the timestamp found in the current trace line and timestampi

is the initial timestamp found in the very first line of the trace file.
On the worker side, there is a fixed number of threads called FetchThreads.

These FetchThreads read and parse a trace line and use Java’s sleep() method
to wait for the appropriate amount of milliseconds to pass before performing
the request. It can happen that the workers are not able to keep up with the
pace. There are at least two situations that might lead to such a problem.
When the supply of trace lines is too large, the worker will at some point

13

reach the maximum number of threads created at the start. This amount
of threads is fixed and started before the actual start of the benchmark,
because dynamic thread creation may negatively impact performance and
correctness of measurements. Another situation in which missed deadlines
may occur is when the SUT goes down. The maximum time out value can
cause a situation in which all threads at some point will be waiting for the
SUT to respond. E.g. when the timeout is set to one minute and there are
500 threads, the system will be able to generate a maximum request rate of
about 500 requests per minute because each thread can wait for a maximum
of one minute to get a reply from the SUT. A missed deadline can be de-
termined easily because the calculated AbsoluteRequestT ime will be in the
past. In this case, the worker sends back a message to the controller and the
controller will abort the benchmark since its results will no longer be reliable
— the timing of requests no longer matches that of the workload file.

From the above it should be clear that each request is bound to strict
timeouts. The default timeout can be changed by giving command-line pa-
rameters to the workers. If the SUT can not keep up with the amount of
requests, WikiBench will keep generating requests. This is a fundamental
difference with other benchmarking tools like TPC-W. This way of testing
matches reality: people generally do not wait for a system to become respon-
sive again.

The request type, POST or GET, is determined by the trace line. If the
trace line ends with a dash, there is no post data, meaning it is a GET request.
Performing a GET request is easy. WikiBench fetches the page, calculates
the page size and drops the fetched data directly after the request. If there
is post data in the trace line, this data is deserialized and posted to the URL
that is in the trace line. This POST data is added by TraceBench, which is
discussed further in Section 3.3. Doing a POST request is not trivial. First
of all, the HttpCore package we use has no helpers for POST requests, so we
need to construct a proper HTTP POST request ourselves. As we already
mentioned, we removed the check for duplicate edits from MediaWiki, which
allows us to directly POST to a wiki page. Without this change, we would
need to request the edit page first and then parse a number of properties from
the form on that page, like timestamps. MediaWiki uses this information to
detect edit conflicts and to protect itself against automated page vadalism.
Since we only have a 10% sample of the Wikipedia traffic it is very likely
that this edit page has not been requested yet, which would force us to insert
requests for edit pages that are not in the workload file. Removing these
checks prevents us from taking such measures: we can now do POST requests
directly. An added advantage is that we do not have to solve edit conflicts,
which may be introduced when multiple threads try to edit the same page.

14

Read trace
line English?

Drop

No

GET or
POST?

Yes

Get data
from DB

Write to
stdout

POST

GET

Start

Sample

Drop

Keep

If not EOF...

Figure 2: TraceBench loop

The time period between requesting the edit page and performing the action
edit can be quite large — humans tend to be slow — therefore MediaWiki
uses the timestamp, hidden in the edit form, to check if another user has
changed the page in the meantime. Section 6 offers a better solution for
cases where full traces are available.

3.3 TraceBench Design

TraceBench is our trace processor, a Java application that reads trace lines
from standard input and writes processed trace lines to standard output.
TraceBench is needed to reduce traffic, which it can do by using sampling.
TraceBench can also add POST data, obtained from a database, to the trace
file. TraceBench takes three command-line parameters:

• the reduction permil, a number from 0 (drop none) up to 1000 (drop
all)

• a JDBC link to the Wikipedia database

15

Prepare
traces

Prepare
System

Under Test

Run
Benchmark

Merge and
sort log files

Post-
processing

Figure 3: WikiBench workflow

• the sampling method

The reduction number expresses the amount of trace file to be removed in
permil (h). The JDBC link is needed to supplement the resulting trace file
with POST data. This POST data currently consists of the latest version
of a wiki page and the time of the latest edit. Future versions might get
specific revisions from the database. That way, WikiBench would be able
to ”replay“ the trace files exactly as it happened in the past. TraceBench
fetches this data directly from the provided database, uses URL encoding to
serialize the data so it can be added at the end of the request in the trace
file. Finally the sampling method determines how traffic intensity is reduced.
This is explained in Section 4.

The architecture of TraceBench is simple and consists of a basic loop as
can be seen in Figure 2. The loop starts by reading a line from standard
input and checking if the trace line corresponds to a request to the English
Wikipedia (en.wikpedia.org). If not, the line is dropped and we start over.
If it is, the URL in the trace line is parsed further. The next step, based
on this URL, is to sample the trace line. There are two sampling methods.
The user can specify the method to be used on the command line. These
methods are discussed in detail in Section 4. If the sampling method decides
this trace line is a keeper, we determine if it is a POST or a GET request.
If the request is found to be a POST request, it means that this is an edit
or creation of a wiki page. In such cases TraceBench fetches the content and
timestamp from the database, serializes the data by using URL encoding and
adds it to the end of the trace line. We finish by writing the newly created
trace line to standard output. This loop repeats until end of file is reached.

16

3.4 WikiBench Workflow

Figure 3 show the typical workflow of a WikiBench benchmark. We will now
look at each step in detail and give a general idea of all the steps that need
to be taken in order to run a benchmark.

3.4.1 Trace File Preparation

Trace files, as obtained from the Wikimedia Foundation, are not completely
sorted by timestamp, contain unnecessary data like request ids — each re-
quest is numbered besides having a timestamp — and have several lines with
missing or scrambled data. Typically, one starts by sorting the trace file by
timestamp and removing the ids that were added in front of each line. This
can be done with regular tools, like gawk and the unix sort tool. After this,
the trace file can be fed to TraceBench, which is robust enough to detect
further problems like missing data or empty lines. The vast amounts of data
make the preparation of the trace files more difficult than it might seem.
There are limits to how large a file you can sort with the unix sort com-
mand, for example. Processing a trace file containing 24 hours worth of data
can be done on a single PC, but beyond that you will need to use specialized
tools. Since the trace files are sorted to a great extent already, one might
think of a sort tool that only sorts within a time window instead of looking
at the entire data file. We have not created such a tool, since we could do
without so far. Since these trace files are not generally available, we include
ready to use trace files with WikiBench.

3.4.2 Configuring The Initial System State

WikiBench can be used with any system that implements the same interface
as Wikipedia. For our initial benchmarks, we have setup a Wikipedia mirror
using the same software components as Wikipedia: an Apache 2.2 web server,
PHP5, MySQL 5 and the MediaWiki software. We have installed Xcache[18],
a common PHP extension that caches php opcode, to give our system a
slight speed bump. Setting up a Wikipedia mirror on a server is not straight
forward. The amount of data is large, so importing it takes much time. For
this research, we have used the Wikipedia snapshots from October 7, 2008.
There are roughly 7 million wiki pages in this snapshot, not including user
and talk pages. The XML dump containing these pages can not be parsed
with regular tools, since these tools tend to create a complete tree of the XML
data. There are a number of tools that were made specially for the purpose
of converting Wikipedia dumps to SQL statements. More info on these tools
can be found on the MediaWiki site [1]. Due to limited resources, we have

17

not included Talk and user pages. Even without content, this data exceeded
the available disk space on our system. TraceBench does not include requests
for Talk and User pages, but can be adapted to do so with little effort.

3.4.3 Running the Benchmark

Once the System Under Test is up and running, it is necessary to first do
a few partial benchmarks to ”warm up” the system. It helps if MediaWiki,
Apache, MySQL and your filesystem are prepared. Apache can for example
increase the amount of processes, MediaWiki has an object cache that gets
filled with cached objects and MySQL can improve performance by loading
index files into memory.

A partial benchmark is enough, since the page level sampling reduces
the amount of pages considerably. So after about ten minutes, the SUT has
served a large part of all the pages that are in the trace file. During warm
up, it is not uncommon for the SUT to become overloaded.

3.4.4 Post-processing

Since each worker logs results to its own file, these files need to be merged
and sorted after the benchmark. This is, for now, a manual process. With an
awk-script we are able to extract data from the final log file. This script takes
a time period in seconds as a parameter and calculates the median response
time, the number of requests and the number of time outs that occurred in
each time period. By using a few simple gnuplot configuration files, these
results can be plotted into a number of images.

18

4 Workload Creation

By now, it should be clear that WikiBench uses trace files to create bench-
mark workloads. We believe the usage of files has a number of advantages:

• the workloads can be adapted without changing WikiBench code, re-
ducing the chance of code errors

• preproduced workloads reduce the system load while running the bench-
mark

• the ability to fetch POST data from the wiki database before running
the benchmark, in order to supplement the trace files

• the possibility to easily alter the workload, e.g. by filtering out requests
using a one line grep or awk command

We think these advantages weight out the disadvantages such as the required
storage space for trace files and the introduction of an extra step in the
benchmark process.

4.1 Changing the Request Rate

The use of access traces however requires us to be able to reduce or increase
traffic intensities. Increasing traffic intensity can be done by combining mul-
tiple periods of trace file into one. We do not support this yet — the trace
files that are available currently have more traffic than our System Under
Test can handle. Reducing traffic is more difficult. We will discuss three
methods and propose our method, which consists of a hybrid approach of
two of these methods.

4.1.1 Time stretching

With time stretching, we mean multiplying the inter-arrival times between
requests with a constant factor. This way, the overall request rate goes down
while all but one properties of the traffic are preserved: only the inter-arrival
times change. A problem that quickly arises with this method is that the
minimum time unit in our trace files is a millisecond. There can be 10 or more
requests in a millisecond, which leaves us without a time interval between
most requests in the trace file. In short this would be a good alternative if
we would have complete traces with timestamps of microsecond precision.

19

4.1.2 Request Level Sampling

Since our traces are already a 10% sample of the complete traces, sampling
this even further seems to be a natural choice. This alternative preserves the
inter-arrival times as they are found in the trace. We end up with an even
smaller percentage of the actual traces. Such a trace would however still be
a realistic traffic simulation, since the trace could represent the traffic that
part of a larger hosting system would receive when a load balancer is put in
front of the complete system. The formulas used for this type of sampling
look as follows:

• Pick a random number Nrand, with 0 < Nrand < 1000

• If Nrand < R drop request, where R is the reduction permil

• Otherwise, the request is kept

The downside of sampling the sample is that we damage the distribution
of page popularity, in terms of amounts of requests. Wikipedia has millions of
pages and there exists a very specific distribution of page popularity, as shown
in [15]. A small part of all the pages receive a majority of the total traffic.
There is a long tail of pages that receive considerably less visitors. A problem
that occurs when removing requests at random is that the pages in this tail
get either overrepresented or underrepresented. Intuitively explained: a page
that is visited only once in a month can have a large impact on a system
because it might not exist in any kind of cache. The cost of building and
showing such a page is large. If such a request gets dropped, the impact
is much larger than dropping a request for the Wikipedia home page, for
example, which is one of the most requested pages and as a result one of the
cheapest ones to serve to a visitor since it will reside in many cache servers.
Another way to explain this is that dropping 1 request of 1000 requests to
a page has less impact than removing the only request to a low-traffic page,
which effectively removes the page from the system altogether. The second
downside of sampling is that we may lose page creations and updates at
random. Updates are a challenge for a hosting system since caches will be
invalidated. We would rather not lose them. Loosing one page creation has
a lot of impact too, because subsequent reads will fail if we don’t take special
measures. We could therefore think of a sub-alternative: sampling, keeping
all the updates and page creations. The obvious advantage of this alternative
is that we do not lose our page updates and creations. The downside however
is that we change the read/save ratio, so we lose some of the realism. This
last method is one of the two modes that can be used in TraceBench.

20

4.1.3 Page Level Sampling

Instead of sampling requests, we can also sample pages. By this we mean that
a subset of the total number of pages is kept and other pages are dropped.
This corresponds to a realistic scenario in which pages are partitioned over a
system in which each part is responsible for maintaining and serving a subset
of the pages.

We can implement this type of sampling by calculating a hash of the
page name. The following formulas determine if a page needs to be kept or
dropped:

• Calculate a cheap hash from the page name: Hp

• If Hp mod 1000 < R drop request, R is the reduction permil

• Otherwise, the request is kept

By sampling pages instead of requests, we do not have the problems of
over- or underrepresentation of infrequently accessed pages. We consistently
keep or drop certain pages, based on their name. This method reduces the
amount of pages known to WikiBench. In mathematical terms this alterna-
tive of sampling creates a subset of the full set of pages. There are three
problems that arise with this alternative. First, there are many templates
and pages that are included in other pages, called transclusions by Wikipedia.
Removing a template or page that is included elsewhere will break those
pages. So when using this alternative, either the complete database needs to
be kept, or such pages need to be identified and retained specifically. Another
problem with this approach is that there is a chance that a highly popular
page, like the Main Page, will be dropped. Such pages need to be excluded
from this sampling method explicitly. The last problem is that when remov-
ing just pages, the amount of requests for static files like style sheets and
template images will be disproportional to the amount of requests for pages.
For this reason, we propose a hybrid approach.

4.2 A Hybrid Approach

We want the best of both worlds, so we combine the regular sampling of
requests and our page sampling alternative. Let us first divide the traces into
two types of request: page requests and non-page requests. A page request
is defined as a read or a write operation on a page. All other requests are the
non-page requests. Sampling at the page level gives us a fair distribution of
popular and less popular pages, thanks to the use of a hash function. It will

21

however create an imbalance in the page/non-page ratio. In other words,
there will be way to many requests for static files and such. Since most
requests for static files are the result of a page request however, these request
types are related. E.g. a user requests a page and as a result of this several
images and style sheets are also requested. We can use regular sampling for
all these non-page requests, removing at random a equally large percentage of
requests in order to restore the balance between page and non-page requests.
The exact percentage to remove is easily derived from the reduction ratio the
user specifies. Because the static file requests are related to page requests,
the distribution and density follows the page requests closely. There are few
static files, so we do not risk over- or underrepresentation of static files.

22

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400

R
eq

ue
st

 ra
te

 (r
eq

ue
st

s/
m

in
ut

e)

Time (minute)

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400

M
ed

ia
n

re
sp

on
se

 ti
m

e
(m

s)

Time (minute)

Figure 4: A 24h benchmark using 0.05% of Wikipedia’s traffic

5 Benchmark Results

Our first benchmark is done on a stand alone server running Apache, MySQL
and PHP. It runs a vanilla MediaWiki installation, that is configured such
that it mimics the URL structure of Wikipedia. The only optimization we
have done is installing the XCache PHP opcode cacher. The system un-
der test is a PC with 2GB of memory and an AMD Athlon 3200+ CPU.
WikiBench and the SUT are connected through a dedicated 100mbps router.

We have created a number of trace files using TraceBench with different
traffic intensities, ranging from 0.5% to 2.0% of the original 10% sample of
the Wikipedia traces. The system under test was able to sustain only the
0.5% trace. Since taken from a 10% sample, this trace contains only 0.05%
of the actual Wikipedia traffic. We used the hybrid sampling approach for
this benchmark.

While doing this benchmark, the importance of warming up the system
has become very clear. The first run of a 0.05% trace overloaded the server,
causing numerous timeouts and HTTP responses with “500 Internal server
error” status codes. The internal server errors were mostly caused by an
unresponsive database. Consecutive runs cause moderate to heavy loads.

Figure 4 shows a typical day of traffic on the English Wikipedia site. On
the left the number of requests per minute is plotted against time. On the

23

right, the median response time per minute is plotted against time. These
figures show a clear relation between the request rate and the response times,
since the high traffic periods show a higher median response time.

While running our benchmarks, we noticed a clear distinction between the
response times of wiki pages and non-wiki pages. Figures 5 and 6 show the
median response times in separate graphs. From Figure 5 it becomes clear
that median response times of the wiki pages are significantly higher than
those of non-wiki pages and files. It is difficult to see a difference between
response times in high and low traffic periods. At around the 550th minute
a significant drop in the median response times can be seen. This drop is
caused by the system being completely overloaded. The low response times
consist of pages that returned an “Invalid server error”: the server notices
it can’t handle the traffic and, without the need for disk seeks and database
queries, it serves up a very simple error page.

Figure 6 shows a consistently low response time for non-wiki pages, like
image files and other static documents. These easy to cache documents, once
stored in cache memory, can be served very quickly. The 2 ms response times
are mainly caused by network transfer and processing time inside the web
server.

As discussed before, there exists a clear relation between a wiki page and
non-wiki documents. Each request for a wiki page is followed by several
supporting documents like images and style sheets. Because of this relation,
non-page requests outnumber the page requests. This is the reason why, in
figure 4, you don’t find the high response times from figure 6. Because we
are using medians, the median response time generally is very close towards
the low response times of non-page requests. This is also the reason why
we have split up Figure 4. There is a lot of extra information that would
otherwise not be visible. In this regard it should be noted that a visitor’s
perception of loading speed is greatly dependent on the speed at which the
HTML pages load. Therefore Figure 4 gives a more realistic view of perceived
speed compared to Figure 5.

These figures show why Wikipedia can be so successful with relatively
simple ways of scaling their hosting setup. Since most pages are updated
only occasionally, the caching of wiki pages introduces a huge performance
gain. The non-wiki page requests are even easier to cache; cached objects
of this type can have long life times. The hosting setup of the WikiMedia
Foundation consists of a large amount of web caching servers (Squid). The
use of web caching servers in this case greatly reduces the load on the web
and database servers. However, the usage of traditional database servers will
at some point limit Wikipedia’s growth. The sheer number of articles that
continues to grow is increasingly difficult to store in a traditional datbase and

24

at some time a more scalable solution will be required, such as a completely
decentralized setup [15] or the use of distributed key-value stores like Dynamo
[6] to store page revisions.

25

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400

W
ik

i p
ag

es
 (r

eq
ue

st
s/

m
in

ut
e)

Time (minute)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400

W
ik

i p
ag

es
 m

ed
ia

n
re

sp
on

se
 ti

m
e

(m
s)

Time (minute)

Figure 5: The 24h benchmark, only considering wiki pages

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 200 400 600 800 1000 1200 1400

N
on

-w
ik

i p
ag

es
 (r

eq
ue

st
s/

m
in

ut
e)

Time (minute)

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400

N
on

-w
ik

i p
ag

es
 m

ed
ia

n
re

sp
on

se
 ti

m
e

(m
s)

Time (minute)

Figure 6: The 24h benchmark, only considering non-wiki pages

26

6 Future Work

WikiBench, in its current form, is a very basic tool. There are several ex-
tensions and improvements with can think of, but did not have time to
implement. We will discuss a few of such extensions.

6.1 Scaling up traffic and Flash Crowds

So far we have focussed on how to reduce traffic intensities. Increasing traffic
intensities can be done too, for example by combining multiple days worth of
data. Another possibility is the addition of synthetic traffic. It would reduce
the traffic realism, but it could be very useful for testing purposes.

It has been shown in [15] that Wikipedia does not receive global flash
crowds. Especially by combining the traffic of multiple different time periods
we could create very realistic flash crowds with relative ease.

6.2 Adjust read/write ratio

Adjusting the ratio between page reads and writes can be especially interest-
ing when testing the impact of updates on a hosting system. More updates
will cause more load on the wiki database. More importantly, more updates
will cause cache servers to be less effective, since pages will age quicker, thus
increasing the load on the web servers and databases. A setup that makes
use of many caching servers, as is done to host the real Wikipedia site, would
be considerably less effective if it would be hosting a wiki site with many
updates.

Changing this ratio would require the injection or removal of update
requests in the trace file. In this case, one needs to take into account the
hybrid sampling approach, in which only a subset of pages can be injected.
Furthermore it would be more realistic to also balance the static/non-static
ratio of document requests, for example by adding requests for static files in
the area where updates are inserted.

6.3 Adjust the distribution of page popularity

In a distributed system where wiki pages are spread over multiple decentral-
ized nodes, as it is proposed in [14] for example, a change in the distribution
of page popularity would require the hosting system to recalculate resource
assignments per node.

Since a wiki can be used for all kinds of purposes, it can be very interesting
to change this distribution to match the expected usage of a system. It

27

can also be interesting to change this distribution while in the middle of a
benchmark, since the hosting system will have to dynamically recalculate the
assignment of resources for many pages.

6.4 Indication of realism

A desirable addition to TraceBench would be the output of a numerical in-
dicator of traffic realism. Such an indicator can give the user a quick way of
determining traffic realism. This is especially useful when traffic is altered in
more than one way, like reducing traffic and adjusting the read/write ratio.

6.5 More advanced edits

Right now, we have altered the MediaWiki code in such a way that it does
not check for edit conflicts. Although this constitutes a very small change it
is not the most desirable solution and there are in fact better ways. Instead
of randomly sending trace lines to the worker that asks for them, we can
also consistently assign page names to hosts. This fixed assignment can be
done easily with a hash and a modulo operation, since the amount of workers
is fixed. Each worker can now keep state and remember the last edittime
of each page. This solution works only if we have full traces, since we will
need to fetch the edit form before submitting a page edit or creation with
the proper timestamps included.

28

7 Conclusion

The importance of web applications has increased over the past years, while
only a limited amount of benchmark tools emerged to test the systems hosting
these web application. These tools have important limitations, which is why
we introduced WikiBench, a scalable web application benchmark tool based
on Wikipedia. WikiBench has advantages over other benchmark tools in the
areas of scalability and realism of the generated workloads. WikiBench uses
Wikipedia’s MediaWiki package, Wikipedia database snapshots and access
traces obtained from the Wikimedia Foundation.

We defined a number of important requirements for WikiBench, like re-
alism and scalability, and worked towards a solution that satisfies these re-
quirements. We showed the design and implementation of WikiBench, in
which a single controller node distributes work to several worker nodes and
coordinates the benchmark. TraceBench, our trace file processor, is able to
reduce traffic intensities while maintaining important properties like inter-
arrival times and the read/save ratio of wiki pages. Key to maintaining
these properties is a combination between regular sampling and page level
sampling, which uses page name hashes to include only a subset of the entire
set of wiki pages in the generated workload files.

Our initial benchmark show a 24 hour period of Wikipedia traffic. The
effects of increasing and decreasing traffic intensities is shown by plotting
median response times, showing a clear relation between traffic intensity and
response times from the system under test.

We proposed a number of improvements to WikiBench and TraceBench,
such as a more advanced way to edit and add wiki pages. We also proposed
ways to alter the workload in order to change traffic properties, such as
scaling up traffic by merging multiple time periods of data and adjusting
the read/write ratio by removing or injecting page edits. By changing such
properties important aspects of a hosting system can be tested. We leave
these improvements for future work.

29

References

[1] Mediawiki, a free software wiki package. http://www.mediawiki.org.

[2] Rubbos: Bulletin board benchmark.
http://jmod.objectweb.org/rubbos.html.

[3] Rubis: Rice university bidding system.
http://rubis.objectweb.org/.

[4] Wikimedia downloads. http://download.wikimedia.org/.

[5] R. Cannings, H. Dwivedi, and Z. Lackey. Hacking Exposed Web 2.0:
Web 2.0 Security Secrets and Solutions. McGraw-Hill Osborne Media,
2007.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205–220, 2007.

[7] D. F. Galletta, R. Henry, S. Mccoy, and P. Polak. Web site delays:
How tolerant are users. Journal of the Association for Information
Systems, 5:1–28, 2004.

[8] T. Groothuyse, S. Sivasubramanian, and G. Pierre. GlobeTP:
Template-based database replication for scalable web applications. In
Proceedings of the 16th International World Wide Web Conference,
Banff, Canada, May 2007.
http://www.globule.org/publi/GTBDRSWA_www2007.html.

[9] HttpCore. A set of low level http transport components that can be
used to build custom client and server side http services.
http://hc.apache.org/httpcomponents-core/index.html.

[10] A. Rousskov and D. Wessels. High-performance benchmarking with
web polygraph. Softw. Pract. Exper., 34(2):187–211, 2004.

[11] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen.
GlobeDB: Autonomic data replication for web applications. In Proc. of
the 14th International World-Wide Web Conference, pages 33–42,
Chiba, Japan, may 2005.
http://www.globule.org/publi/GADRWA_www2005.html.

30

[12] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso.
GlobeCBC: Content-blind result caching for dynamic web applications.
Technical Report IR-CS-022, Vrije Universiteit, Amsterdam, The
Netherlands, June 2006.
http://www.globule.org/publi/GCBRCDWA_ircs022.html.

[13] W. Smith. Tpc-w: Benchmarking an ecommerce solution. Whitepaper,
Transaction Processing Performance Council.

[14] G. Urdaneta, G. Pierre, and M. van Steen. A decentralized wiki engine
for collaborative wikipedia hosting. In Proceedings of the 3rd
International Conference on Web Information Systems and
Technologies, Mar. 2007.
http://www.globule.org/publi/DWECWH_webist2007.html.

[15] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload
analysis for decentralized hosting. Elsevier Computer Networks, 2009.
http://www.globule.org/publi/WWADH_comnet2009.html.

[16] Z. Wei, J. Dejun, G. Pierre, C.-H. Chi, and M. van Steen.
Service-oriented data denormalization for scalable web applications. In
Proceedings of the 17th International World Wide Web Conference,
Beijing, China, Apr. 2008.
http://www.globule.org/publi/SODDSWA_www2008.html.

[17] WikiMedia. Mediawiki 1.3.11 release notes, February 2005. http:
//sourceforge.net/project/shownotes.php?release_id=307067.

[18] XCache. A fast, stable php opcode cacher.
http://xcache.lighttpd.net/.

31

