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Importance of Social Web Platforms 

• Use of online social web platforms growing at staggering pace: 

•  Twitter 
–  11 new accounts are created per second 
–  More than 300 million users in 2011 
–  Over 2200 tweets and over 18,000 queries per second, spikes at up to  

4× that load 

•  Facebook 
–  Over 800 million active users and 100 billion hits per day 

• è Therefore their architectures are under strain 

2 



Real-Time Data Processing Platforms 

•  Changing role of social web platforms (e.g. Facebook, Twitter, etc.) 
–  Once places just to collect and display digital artefacts 

•  Rather than reporting on the world, social networks now actually 
shaping it directly! 

–  Use of Twitter in Arab uprising, and other protests globally 
–  … yet much of the analytics operates off-line using large batch jobs 

•  Emerging role: 
Processing large amounts of user-generated data on-the-fly 
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Sample Scenario: Location-based Advertising 

•  Social networks are increasingly accessed using mobile devices 
–  Companies want to advertise services/products via social networks 
–  Potential customers should be targeted based on interests & location 

•  Real-time location-based advertising 
–  Conversations on social platforms can be mined in real-time for terms that 

match advertised products/services 
–  Current geographical location of each customer (e.g. GPS on smartphone) 

correlates with advertised products/services nearby 
–  Customised ads are pushed to mobile devices when in proximity 
 

•  Social web platforms such as Facebook allow third-party add-ons 
–  Place new real-time requirements on infrastructure 
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Main Idea 

•  Time to rethink fundamentally the distributed architecture of 
social web platforms 

–  Focus on processing fresh data responsively 
–  Relegate storage-focused components to historical data management 
–  Exploit publish/subscribe communication for real-time data processing 

• Outline: 
1.  Evolution of social web platforms 
2.  Storage-centric platform model è Publish/subscribe platform model 
3.  Open challenges and conclusions 
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Evolution of Social Web Platforms 

•  Platforms have been changing architecture frequently 
–  Twitter launched July 2006: new memory cache layers needed by year 4 
–  Facebook: wide assortment of software platforms has accumulated 

•  In particular, relational databases result in problems: 
–  Twitter added in-memory caches but… 
–  …dropped MySQL back-end: 10-20% service rejection during FIFA World Cup 
–  LinkedIn launched 2003: soon dropped Oracle/MySQL 

–  Facebook developed own infrastructure (Cassandra) to scale up 

• We believe: object stores are only half-way to ideal solution 
–  Push computation into request-handling part of network, not storage layer 
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Move Towards Real-time Processing 

•  All sorts of custom systems have popped up: 

•  Analysis and web platform are typically still separate systems 
–  Facebook: Hadoop and Hive for offline processing (Hbase storage) 

•  Also use Scribe and ScribeHDFS: logging & click-stream analysis 

–  Twitter Storm and Yahoo S4 for offline analysis of streams 

•  Core web presence still tends to be storage-centric 
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Storage-centric Architecture 
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• Existing architecture usually has three main software layers 

• Worker processes 
–  Link end-user processes into social web platform 
–  Correlate stored information to present data to users 



Storage-centric Architecture 
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•  Storage often done using NoSQL object stores 
–  Restricted expressiveness, e.g. no support for complex “join” operations 

• Object store distributed over cluster 
–  Better scalability than clustered relational databases 



Storage-centric Architecture 
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• Memory caching layers reduces I/O latency 
–  Often distributed over cluster (e.g. memcached) 

• Key problems 
–  Semantic mismatch between cache and store 
–  Not a push architecture for updates 

•  Cache just does object fetches; data correlation up to workers 



Future Evolution of Storage-centric Architecture 

• Main message: 
”Architecture of social web platforms should be around live 
communication and not storage” 

• Use unified design for querying, analysing & storing data 
–  Unlike storage-centric: not just caching data items  

•  Cache has semantic awareness, captures data interconnections & dependencies 

•  Support for inherently push-based updates 
–  Simplifies platform work in providing timely interface to users 
–  Strengthens consistency (Facebook frequently returns stale data) 

•  Exploit publish/subscribe communication paradigm… 
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Publish/subscribe Communication 

•  Publish/subscribe paradigm: 
–  Connects publishers (senders) and subscribers 

(receivers)  
–  Uses topics or message content (instead of explicit 

destination addresses) 

• Message Brokers manage interconnection: 
1.  Publisher advertises intent to publish 
2.  Subscriber indicates topics/message content of interest 
3.  Publishers publish messages agnostic to subscribers 
4.  Subscribers are notified of matching messages 
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Distributed Publish/subscribe 

•  Publish/subscribe communication 
with multiple message brokers 

–  Makes communication infrastructure 
more scalable and resilient 

–  Message dissemination graph formed 
across brokers 

–  Spanning tree connects pubs/subs 

•  Brokers form message processing 
network 

–  Perform computation at brokers on the 
path of messages 

–  Allows direct processing of message data 
in transit 
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Publish/subscribe Architecture 
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• Key point: 
Perform data processing within  
broker network 

–  Merge cache and object-store layers 

• Brokers take responsibility for data 
–  E.g. subscriptions to posts with  

“platypus” tag 

• Broker topology matches data  
centre network hierarchy 

–  Extra inter-broker links increase  
resilience to network failures 
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Publish/subscribe Architecture 
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• Offload computation from front-end worker processes 
–  Front-end processes become subscribers and publishers in publish/

subscribe back-end 
•  Directly facilitates push-updates to front-end results 

–  Front-end should ideally only format and serialise user requests 
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Publish/subscribe Architecture 
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• Merge cache and storage layer of storage-centric architecture 

• Augment brokers with storage and application logic 
–  Distribute object store throughout brokers 
–  Include cache functionality in front of  

object store 
–  Ensure that application logic runs on brokers 
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Benefits of Pub/sub Architecture 

• Responsiveness 
–  Push-based architecture: brokers can respond to new data immediately 
–  Run application logic on broker nodes (unlike memcached) 

•  e.g.: efficient dynamic computation: who is commenting on user’s posts now 

•  Scalability and elasticity 
–  Add more machines to broker network 

•  Publish/subscribe broker network routes over all nodes 

–  Global scaling up only involves changing local data 

•  Load balancing 
–  Platforms must adapt to changing patterns of end-user behaviour 

•  Traffic spikes: flash crowds & content “going viral” 

–  Distributed publish/subscribe architectures inherently provide load-balancing 
•  Multi-hop routing spreads load 
•  Fine-grained, content-based classification of data spreads load 
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Support for Third-Party Real-Time Apps 

•  Third-party apps are hosted at brokers 

•  Sensible model for third-party applications: 
①  Application providers retain ownership of data: do not give it away 

•  Facebook currently do not run extensions on their servers 

②  Third-party applications only see required data 
•  Benefits privacy and facilitates payment plans based on actual usage 
•  Expressive subscription languages mean that third-party apps do not filter data 

③  New applications scale by adding message brokers 
•  Preserves scalability and elasticity even as third-party applications join platform 

18 



Open Challenges 

•  Architecture not storage-centric: complicates persistence 
–  Need to manage live and historic data uniformly 
–  Requires careful monitoring of replication across availability zones 
 

• New algorithms for request routing needed 
–  e.g. load-balancing of request flows in broker network 
–  Static vs dynamic decisions, maintenance of broker topology  

•  Security harder to enforce 
–  Third-party code executes as part of core infrastructure 
–  Relies on sand-boxing for data and performance isolation 
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Conclusions 

•  Abandon storage-centric view and embrace on-the-fly processing 

• Distributed pub/sub system as backbone for social web platforms 
–  Satisfies increasing demand for fresh data processing 
–  Supports on-the-fly data analysis by third-party applications 

•  Support for scalability, elasticity, and load balancing 
–  Provides more uniform architecture for scaling 
–  Facilitates optimisation of data routing strategies 
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Thank You! Any Questions? 
Peter Pietzuch 

<prp@doc.ic.ac.uk> 
http://lsds.doc.ic.ac.uk 


