Im perial COI Iege Department of Computing

Living in the Present:
On-the-fly Information Processing in
Scalable Web Architectures

University of Otago, TU Darmstadt, Imperial College London, Purdue University

dme@cs.otago.ac.nz, freudenreich@dvs.tu-darmstadt.de, margara@elet.polimi.it,
frischbier@dvs.tu-darmstadt.de, prp@doc.ic.ac.uk, p@cs.purdue.edu

CloudCP Workshop — April 2012

Importance of Social Web Platforms

Use of online social web platforms growing at staggering pace:

Twitter
— 11 new accounts are created per second

— More than 300 million users in 2011
— Over 2200 tweets and over 18,000 queries per second, spikes at up to

4x that load

Facebook
— Over 800 million active users and 100 billion hits per day

Real-Time Data Processing Platforms

Changing role of social web platforms (e.g. Facebook, Twitter, etc.)
— Once places just to collect and display digital artefacts

Rather than reporting on the world, social networks now actually
shaping it directly!

— Use of Twitter in Arab uprising, and other protests globally

— ... yet much of the analytics operates off-line using large batch jobs

Emerging role:

Sample Scenario: Location-based Advertising

Social networks are increasingly accessed using mobile devices

Companies want to advertise services/products via social networks
Potential customers should be targeted based on interests & location

Conversations on social platforms can be mined in real-time for terms that
match advertised products/services

Current geographical location of each customer (e.g. GPS on smartphone)
correlates with advertised products/services nearby

Customised ads are pushed to mobile devices when in proximity

Social web platforms such as Facebook allow third-party add-ons

Place new real-time requirements on infrastructure

Main Idea

Time to rethink fundamentally the distributed architecture of
social web platforms
— Focus on processing fresh data responsively
— Relegate storage-focused components to historical data management
— Exploit publish/subscribe communication for real-time data processing

Outline:
1. Evolution of social web platforms

3. Open challenges and conclusions

Evolution of Social Web Platforms

Platforms have been changing architecture frequently
— Twitter launched July 2006: new memory cache layers needed by year 4
— Facebook: wide assortment of software platforms has accumulated

In particular, result in problems:
— Twitter added in-memory caches but...
— ...dropped MySQL back-end: 10-20% service rejection during FIFA World Cup
— LinkedIn launched 2003: soon dropped Oracle/MySQL
— Facebook developed own infrastructure (Cassandra) to scale up

We believe: object stores are only half-way to ideal solution
— Push computation into request-handling part of network, not storage layer

Move Towards Real-time Processing

All sorts of custom systems have popped up:

Twitter LinkedIn Facebook

| Storm (CEP) | | Historic: Cassandra

Analysis and web platform are typically still separate systems

— Facebook: Hadoop and Hive for offline processing (Hbase storage)
¢ Also use Scribe and ScribeHDFS: logging & click-stream analysis

— Twitter Storm and Yahoo S4 for offline analysis of streams

Core web presence still tends to be storage-centric

Storage-centric Architecture

Existing architecture usually has three main software layers

— Link end-user processes into social web platform
— Correlate stored information to present data to users

()

worker
process

\ J/

I

()

worker
process

\ J/

A
to/from end-users

worker
process

Storage-centric Architecture

Storage often done using NoSQL

— Restricted expressiveness, e.g. no support for complex “join” operations

Object store distributed over cluster
— Better scalability than clustered relational databases

— e

r) Object store
worker cluster
process — —

» N / Object store
d () cluster
2 | worker — —
ek o [
c | process °
ot °
. J
g o — Ty
= ® Object store
= ®
i) cluster
worker _— —
process Object store
cluster

— I

Storage-centric Architecture

layers reduces I/O latency
— Often distributed over cluster (e.g. memcached)

Key problems
— Semantic mismatch between cache and store

— Not a push architecture for updates
e Cache just does object fetches; data correlation up to workers

—
e

- N hed) Object store
memcache
worker) cluster
process - \ — —
o \) memcached Obiject store
. J
§ 0) _ cluster
<5 Worker memcached °
c | process . °
o ® [
. J .
5 8 . T store |
= ° - Object store
S ® memcached cluster
. e
worker - —
process ‘\ﬁ memcached J Object store
cluster 10

B

Future Evolution of Storage-centric Architecture

Main message:

Use unified design for querying, analysing & storing data

— Unlike storage-centric: not just caching data items
¢ Cache has semantic awareness, captures data interconnections & dependencies

Support for inherently push-based updates

— Simplifies platform work in providing timely interface to users
— Strengthens consistency (Facebook frequently returns stale data)

Exploit publish/subscribe communication paradigm...

11

Publish/subscribe Communication

Publish/subscribe paradigm: (publisher)
— Connects publishers (senders) and subscribers .
(receivers) 2,:_ 5
— Uses or (instead of explicit @ 5
destination addresses) E' ?f,l
[pub/sub]
manage interconnection: broker
1. Publisher advertises intent to publish wT -
2. Subscriber indicates topics/message content of interest fo Z
3. Publishers publish messages agnostic to subscribers § =
4. Subscribers are notified of matching messages 2 ¢

(subscriber J

12

Distributed Publish/subscribe

Publish/subscribe communication
with multiple

— Makes communication infrastructure
more scalable and resilient

— Message dissemination graph formed
across brokers

— Spanning tree connects pubs/subs

Brokers form

— Perform computation at brokers on the
path of messages

— Allows direct processing of message data
in transit

(publisher) (publisher)

L4

pub/sub pub/sub
broker broker

pub/sub
broker
pread ™~

pub/sub pub/sub
broker broker

v [\

(subscriber J (subsoriber J

13

Publish/subscribe Architecture

Key point:

— Merge cache and object-store layers

Brokers take responsibility for data
— E.g. subscriptions to posts with

“platvpus” ta pub/sub pub/sub
. 0
Broker topology matches data

centre network hierarchy [pub/sub] pub/sub]0 pub/sub
— Extra inter-broker links increase broker broker bmker

resilience to network failures
pub/sub - pub/sub pub/s b
broker broker broker

Publish/subscribe Architecture

Offload computation from front-end worker processes
— Front-end processes become subscribers and publishers in publish/
subscribe back-end
¢ Directly facilitates push-updates to front-end results
— Front-end should ideally only format and serialise user requests

pub/sub pub/sub
broker broker
< 2»(front-end)
2 (Fomens : :
< T »(_front-end)\ S
°

ers

C

e o pub/sub pub/sub <y | PUb/SUD

2 ¢ broker broker broker
<9

+»{ front-end l

pub/sub 4_» pub/sub pub/su
broker broker broker

Publish/subscribe Architecture

Merge cache and storage layer of storage-centric architecture

Augment brokers with and
— Distribute object store throughout brokers
— Include cache functionality in front of : pub/sub broker

object store
— Ensure that application logic runs on brokers logic store
pub/sub | ..~ [pub/sub
‘broker | .7 broker
< 2»(front-end) :
o
]

/
0
4_%){ front-end)\ I. >ﬁ EX

ers

C
°
GEJ : pub/sub pub/sub - pub/sub
2 broker broker broker
<9

+»{ front-end l /4 \ \ /4
pub/sub - pub/sub pub/sub
broker broker broker

16

Benefits of Pub/sub Architecture

Responsiveness
— Push-based architecture: brokers can respond to new data immediately

— Run application logic on broker nodes (unlike memcached)
e e.g.: efficient dynamic computation: who is commenting on user’s posts now

Scalability and elasticity
— Add more machines to broker network
¢ Publish/subscribe broker network routes over all nodes
— Global scaling up only involves changing local data

Load balancing
— Platforms must adapt to changing patterns of end-user behaviour
o Traffic spikes: flash crowds & content “going viral”
— Distributed publish/subscribe architectures inherently provide load-balancing

e Multi-hop routing spreads load
¢ Fine-grained, content-based classification of data spreads load

17

Support for Third-Party Real-Time Apps

Third-party apps are hosted at brokers

Sensible model for third-party applications:

(D Application providers retain ownership of data: do not give it away
e Facebook currently do not run extensions on their servers

@ Third-party applications only see required data
¢ Benefits privacy and facilitates payment plans based on actual usage
e Expressive subscription languages mean that third-party apps do not filter data

@ New applications scale by adding message brokers
e Preserves scalability and elasticity even as third-party applications join platform

18

Open Challenges

Architecture not storage-centric: complicates persistence
— Need to manage live and historic data uniformly
— Requires careful monitoring of replication across availability zones

New algorithms for request routing needed
— e.g. load-balancing of request flows in broker network
— Static vs dynamic decisions, maintenance of broker topology

Security harder to enforce
— Third-party code executes as part of core infrastructure
— Relies on sand-boxing for data and performance isolation

19

Conclusions

Abandon storage-centric view and embrace on-the-fly processing

Distributed pub/sub system as backbone for social web platforms
— Satisfies increasing demand for fresh data processing
— Supports on-the-fly data analysis by third-party applications

Support for scalability, elasticity, and load balancing
— Provides more uniform architecture for scaling
— Facilitates optimisation of data routing strategies

Peter Pietzuch
<prp@doc.ic.ac.uk>
http://Isds.doc.ic.ac.uk 20

