
Peter R. Pietzuch
prp@doc.ic.ac.uk

Living in the Present:
On-the-fly Information Processing in

Scalable Web Architectures

David Eyers, Tobias Freudenreich, Alessandro Margara,
Sebastian Frischbier, Peter Pietzuch, Patrick Eugster

University of Otago, TU Darmstadt, Imperial College London, Purdue University

CloudCP Workshop – April 2012

Department of Computing

dme@cs.otago.ac.nz, freudenreich@dvs.tu-darmstadt.de, margara@elet.polimi.it,
frischbier@dvs.tu-darmstadt.de, prp@doc.ic.ac.uk, p@cs.purdue.edu

Importance of Social Web Platforms

• Use of online social web platforms growing at staggering pace:

•  Twitter
–  11 new accounts are created per second
–  More than 300 million users in 2011
–  Over 2200 tweets and over 18,000 queries per second, spikes at up to

4× that load

•  Facebook
–  Over 800 million active users and 100 billion hits per day

• è Therefore their architectures are under strain

2

Real-Time Data Processing Platforms

•  Changing role of social web platforms (e.g. Facebook, Twitter, etc.)
–  Once places just to collect and display digital artefacts

•  Rather than reporting on the world, social networks now actually
shaping it directly!

–  Use of Twitter in Arab uprising, and other protests globally
–  … yet much of the analytics operates off-line using large batch jobs

•  Emerging role:
Processing large amounts of user-generated data on-the-fly

3

Sample Scenario: Location-based Advertising

•  Social networks are increasingly accessed using mobile devices
–  Companies want to advertise services/products via social networks
–  Potential customers should be targeted based on interests & location

•  Real-time location-based advertising
–  Conversations on social platforms can be mined in real-time for terms that

match advertised products/services
–  Current geographical location of each customer (e.g. GPS on smartphone)

correlates with advertised products/services nearby
–  Customised ads are pushed to mobile devices when in proximity

•  Social web platforms such as Facebook allow third-party add-ons
–  Place new real-time requirements on infrastructure

4

Main Idea

•  Time to rethink fundamentally the distributed architecture of
social web platforms

–  Focus on processing fresh data responsively
–  Relegate storage-focused components to historical data management
–  Exploit publish/subscribe communication for real-time data processing

• Outline:
1.  Evolution of social web platforms
2.  Storage-centric platform model è Publish/subscribe platform model
3.  Open challenges and conclusions

5

Evolution of Social Web Platforms

•  Platforms have been changing architecture frequently
–  Twitter launched July 2006: new memory cache layers needed by year 4
–  Facebook: wide assortment of software platforms has accumulated

•  In particular, relational databases result in problems:
–  Twitter added in-memory caches but…
–  …dropped MySQL back-end: 10-20% service rejection during FIFA World Cup
–  LinkedIn launched 2003: soon dropped Oracle/MySQL

–  Facebook developed own infrastructure (Cassandra) to scale up

• We believe: object stores are only half-way to ideal solution
–  Push computation into request-handling part of network, not storage layer

6

Move Towards Real-time Processing

•  All sorts of custom systems have popped up:

•  Analysis and web platform are typically still separate systems
–  Facebook: Hadoop and Hive for offline processing (Hbase storage)

•  Also use Scribe and ScribeHDFS: logging & click-stream analysis

–  Twitter Storm and Yahoo S4 for offline analysis of streams

•  Core web presence still tends to be storage-centric

7

Twitter LinkedIn Facebook

Lucene Kafka (Scala
+Zookeeper)

FB Messages: Epoll

Storm (CEP) Historic: Cassandra

Storage-centric Architecture

8

worker
process

worker
process

worker
process

to
/fr

om
 e

nd
-u

se
rs

• Existing architecture usually has three main software layers

• Worker processes
–  Link end-user processes into social web platform
–  Correlate stored information to present data to users

Storage-centric Architecture

9

Object store
cluster

Object store
cluster

Object store
cluster

Object store
clusterworker

process

worker
process

worker
process

to
/fr

om
 e

nd
-u

se
rs

•  Storage often done using NoSQL object stores
–  Restricted expressiveness, e.g. no support for complex “join” operations

• Object store distributed over cluster
–  Better scalability than clustered relational databases

Storage-centric Architecture

Object store
cluster

Object store
cluster

Object store
cluster

Object store
clustermemcached

memcached

memcached

memcached

memcached

worker
process

worker
process

worker
process

to
/fr

om
 e

nd
-u

se
rs

10

• Memory caching layers reduces I/O latency
–  Often distributed over cluster (e.g. memcached)

• Key problems
–  Semantic mismatch between cache and store
–  Not a push architecture for updates

•  Cache just does object fetches; data correlation up to workers

Future Evolution of Storage-centric Architecture

• Main message:
”Architecture of social web platforms should be around live
communication and not storage”

• Use unified design for querying, analysing & storing data
–  Unlike storage-centric: not just caching data items

•  Cache has semantic awareness, captures data interconnections & dependencies

•  Support for inherently push-based updates
–  Simplifies platform work in providing timely interface to users
–  Strengthens consistency (Facebook frequently returns stale data)

•  Exploit publish/subscribe communication paradigm…

11

Publish/subscribe Communication

•  Publish/subscribe paradigm:
–  Connects publishers (senders) and subscribers

(receivers)
–  Uses topics or message content (instead of explicit

destination addresses)

• Message Brokers manage interconnection:
1.  Publisher advertises intent to publish
2.  Subscriber indicates topics/message content of interest
3.  Publishers publish messages agnostic to subscribers
4.  Subscribers are notified of matching messages

12

pub/sub
broker

publisher

subscriber

1 Advertise

2
Su

bs
cr

ib
e

3
Pu

bl
is

h

4 N
otify

Distributed Publish/subscribe

•  Publish/subscribe communication
with multiple message brokers

–  Makes communication infrastructure
more scalable and resilient

–  Message dissemination graph formed
across brokers

–  Spanning tree connects pubs/subs

•  Brokers form message processing
network

–  Perform computation at brokers on the
path of messages

–  Allows direct processing of message data
in transit

13

pub/sub
broker

pub/sub
broker

publisher

pub/sub
broker

subscriber

pub/sub
broker

subscriber

pub/sub
broker

publisher

Publish/subscribe Architecture

14

• Key point:
Perform data processing within
broker network

–  Merge cache and object-store layers

• Brokers take responsibility for data
–  E.g. subscriptions to posts with

“platypus” tag

• Broker topology matches data
centre network hierarchy

–  Extra inter-broker links increase
resilience to network failures

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

Publish/subscribe Architecture

15

• Offload computation from front-end worker processes
–  Front-end processes become subscribers and publishers in publish/

subscribe back-end
•  Directly facilitates push-updates to front-end results

–  Front-end should ideally only format and serialise user requests

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
brokerfront-end

front-end

front-endto
/fr

om
 e

nd
-u

se
rs

Publish/subscribe Architecture

16

• Merge cache and storage layer of storage-centric architecture

• Augment brokers with storage and application logic
–  Distribute object store throughout brokers
–  Include cache functionality in front of

object store
–  Ensure that application logic runs on brokers

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub broker
object
store

cacheapp
logic

front-end

front-end

front-endto
/fr

om
 e

nd
-u

se
rs

Benefits of Pub/sub Architecture

• Responsiveness
–  Push-based architecture: brokers can respond to new data immediately
–  Run application logic on broker nodes (unlike memcached)

•  e.g.: efficient dynamic computation: who is commenting on user’s posts now

•  Scalability and elasticity
–  Add more machines to broker network

•  Publish/subscribe broker network routes over all nodes

–  Global scaling up only involves changing local data

•  Load balancing
–  Platforms must adapt to changing patterns of end-user behaviour

•  Traffic spikes: flash crowds & content “going viral”

–  Distributed publish/subscribe architectures inherently provide load-balancing
•  Multi-hop routing spreads load
•  Fine-grained, content-based classification of data spreads load

17

Support for Third-Party Real-Time Apps

•  Third-party apps are hosted at brokers

•  Sensible model for third-party applications:
①  Application providers retain ownership of data: do not give it away

•  Facebook currently do not run extensions on their servers

②  Third-party applications only see required data
•  Benefits privacy and facilitates payment plans based on actual usage
•  Expressive subscription languages mean that third-party apps do not filter data

③  New applications scale by adding message brokers
•  Preserves scalability and elasticity even as third-party applications join platform

18

Open Challenges

•  Architecture not storage-centric: complicates persistence
–  Need to manage live and historic data uniformly
–  Requires careful monitoring of replication across availability zones

• New algorithms for request routing needed
–  e.g. load-balancing of request flows in broker network
–  Static vs dynamic decisions, maintenance of broker topology

•  Security harder to enforce
–  Third-party code executes as part of core infrastructure
–  Relies on sand-boxing for data and performance isolation

19

Conclusions

•  Abandon storage-centric view and embrace on-the-fly processing

• Distributed pub/sub system as backbone for social web platforms
–  Satisfies increasing demand for fresh data processing
–  Supports on-the-fly data analysis by third-party applications

•  Support for scalability, elasticity, and load balancing
–  Provides more uniform architecture for scaling
–  Facilitates optimisation of data routing strategies

20

Thank You! Any Questions?
Peter Pietzuch

<prp@doc.ic.ac.uk>
http://lsds.doc.ic.ac.uk

